

The effects of temperature on the development and mortality of *Eretmocerus* warrae (Nauman & Schmidt)

Tao Wang PhD candidate

Supervisors: Assoc. Prof. Michael A. Keller
Dr. Katja Hogendoorn
Independent Advisor: Dr. Angela McGuire

Greenhouse whitefly

Direct feeding

Vector of virus infection

Sooty mould caused by honeydew release

Life cycle of greenhouse whitefly

Adult

Eggs

 1^{st} , 2^{nd} and 3^{rd} instar nymphs

Pupa

Biological control by parasitic wasps

Encarsia formosa

Eretmocerus mundus

Eretmocerus warrae

Trophic interactions

Greenhouse whitefly

Eretmocerus warrae

Tomato plants

Encarsia formosa

Status:

- Most widely used
- Effective control

Encarsia formosa

Temperature-dependent development of *Encarsia formosa*

(Briere et al., 1999)

Limitation

Weakness: limited tolerance for extreme temperatures

(Briere et al., 1999)

Eretmocerus warrae

Status:

- A newly described species
- A commercial product now

Eretmocerus warrae

Supposed to have a broader tolerance for extreme temperatures

Research questions

 How does temperature affect the development and fecundity of *E. warrae*?

 What is the effect of high temperature on E. warrae, compared with En. formosa?

Significance of the project

Understanding temperature effects on E. warrae

➤ Using *E. warrae* effectively

Effects of temperature on developmental rate of *E. warrae*

Tomato plant infested with 2nd instar greenhouse whitefly nymphs with clip cages

3 clip cages/plant * 4 plants

Temperatures (°C)	Number of wasps in each clip cage
15	13
20	4
25	3
30	2
33	2

Effects of temperature on development of *E. warrae*

Temperature-dependent developmental rate of Eretmocerus warrae

Effects of temperature on development of *E. warrae*

Temperature-dependent developmental rate of Eretmocerus warrae vs En. formosa

Effects of temperature on oviposition

Aim: Investigate oviposition by E. warrae at different

temperatures

Tomato leaf infested with 2nd instar greenhouse whitefly nymphs in clip cage

4 wasps * 4 replicates (3 hours)

Effects of temperature on oviposition

Effects of higher temperature on developmental rate of *E. warrae* & *En. formosa*

Tomato plant infested with 2nd instar greenhouse whitefly nymphs with clip cages

3 clip cages/plant * 4 plants

Temperatures (°C)	Number of wasps in each clip cage
30	6
33	6
34.5	9
36	18
37.5	36

Effects of high temperature on development

Mortality of *E. warrae* vs *En. formosa* after short exposure to high temperature

Temperatures: 36 & 37.5°C

10 wasps * 5 replicates

Survival of *E. warrae* vs *En. formosa* after short exposure to high temperature

Summary

This research will give a broader understanding of E. warrae

E. warrae could prove to be an alternative or supplement of En. formosa, particularly at high temperatures

Acknowledgements

School of AFW:

Assoc. Prof. Michael A. Keller

Dr. Katja Hogendoorn

Members of plant protection group

Biological Services:

Dr. Angela McGuire, James Altmann

China Scholarship Council